Short communication

Evaluation of sperm recovery following annexin V magnetic-activated cell sorting separation

Tamer M Said,1,3,4 Ashok Agarwal,1 Sonja Grunewald,2 Manja Rasch,2 Hans-Juergen Glander,2 Uwe Paasch2
1Centre for Advanced Research in Human Reproduction, Infertility and Sexual Function, Glickman Urological Institute and Department of Obstetrics-Gynecology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195; 2Department of Dermatology/Andrology Unit, University of Leipzig, Germany
3Present address: Andrology Laboratory & Reproductive Tissue Bank, Repromed Ltd., Toronto, Ontario, Canada.
4Correspondence: Fax: +1 416 233 9180; e-mail: tammersaid@repromedltd.com

Abstract

Magnetic-activated cell sorting (MACS) using paramagnetic annexin V-conjugated microbeads eliminates spermatozoa with externalized phosphatidylserine, which is considered one of the features of apoptosis. The objective of this study was to evaluate sperm recovery following the use of MACS as a sperm preparation technique. Mature spermatozoa were separated and divided into two fractions: the first was prepared by density gradient centrifugation (DGC) and MACS, while the second was prepared by DGC only. Following MACS, the percentage of cells collected in the annexin-negative fraction was significantly higher than the annexin-positive fraction and the sperm recovery rate was 13.8 ± 12.1%. In conclusion, the integration of MACS with DGC can be considered as an effective sperm preparation technique that does not lead to significant cell loss. Separating a distinctive population of non-apoptotic spermatozoa with intact membranes may optimize the outcome of assisted reproduction.

Keywords: annexin, apoptosis, magnetic-activated cell sorting, recovery rate, sperm preparation

Introduction

Assisted reproductive techniques have become the treatment of choice in many cases of male and female infertility. Successful fertilization requires a sperm plasma membrane with normal integrity and function (Flesch et al., 2000). A spermatozoal membrane with impaired integrity is known to occur more frequently in infertile men and contributes to infertility despite the presence of normal routine sperm parameters (Duru et al., 2001; Glander and Schaller, 1999; Sugkraroek et al., 1991). This may be one of the reasons behind the current suboptimal clinical pregnancy and live birth rates following assisted reproductive techniques.

The plasma membrane is one of the key structures in spermatozoa of infertile men displaying apoptotic features (Glander and Schaller, 1999). Early phases of disturbed membrane function are associated with asymmetry of the membrane phospholipids and changes in lipid composition (Schiller et al., 2000). The phospholipid phosphatidylserine (PS), which is normally present on the inner leaflet of the plasma membrane, becomes externalized to the outer leaflet (Vermes et al., 1995). The externalization of PS is currently accepted as a membrane marker for early apoptosis (Martin et al., 1995). Annexin V is characterized by high affinity for PS and does not have the ability to pass the intact sperm membrane. Therefore, annexin V binding to spermatozoa characterizes disturbed integrity of the sperm membrane (Glander and Schaller, 1999).

Colloidal super-paramagnetic microbeads (~50 nm in diameter) conjugated with annexin V have been shown to separate the dead and apoptotic spermatozoa by magnetic-activated cell sorting (MACS). Cells exposing PS bind to these microbeads (annexin positive) are enriched to high extent within a column containing iron balls when placed in a very strong magnetic field. Cells with intact membranes remain unlabelled (annexin negative), and pass freely through the column (Miltonyi et al., 1990; von Schonfeldt et al., 1999).

The binding of paramagnetic annexin V microbeads (ANMB) during MACS is an effective method to eliminate spermatozoa at early apoptotic stages from fresh and cryopreserved samples (Grunewald et al., 2001). ANMB-negative spermatozoa have been characterized as non-apoptotic with the lowest amount of caspase activation, disruption of mitochondrial membrane potential and DNA fragmentation (Paasch et al., 2004; Said et al., 2005a). Furthermore, these cells display higher fertilization rates when used for animal model IVF and intracytoplasmic sperm injection (ICSI) (Said et al., 2006). The combination of MACS with density gradient centrifugation (DGC) in a single sperm preparation protocol results in spermatozoa with superior quality (Said et al., 2005a). Nevertheless, cell loss and sperm recovery rates during and after the procedure remain to be evaluated. The objective of this study was to evaluate the sperm cell recovery rate after MACS separation in order to assess the future potential of this method for the preparation of compromised samples.
Materials and methods

Sample preparation

Following approval of the institution review board (IRB), semen samples were collected from 19 healthy donors with semen parameters exceeding World Health Organization reference ranges for the normal fertile population (World Health Organization, 1999). The liquefied semen samples were prepared by double density gradient centrifugation (PureCeption®, SAGE BioPHARMA, Bedminster, NJ, USA). In brief, samples were loaded onto a 40% and 80% discontinuous gradient and centrifuged at 300 g for 20 min at room temperature. The resulting 80% pellet representing the mature fraction was washed by centrifugation for an additional 7 min and re-suspended in human tubal fluid medium (HTF, Irvine Scientific, Santa Ana, CA, USA). The sperm cell suspension was divided into two aliquots: the first was further separated into annexin-negative (non-apoptotic) and annexin-positive (apoptotic) fractions using MACS, while the second was left unseparated as a control. Sperm recovery rates were calculated following DGC compared with raw semen samples, and following MACS compared with post-DGC samples using the following formula:

\[
\frac{\text{No. motile spermatozoa after separation}}{\text{No. motile spermatozoa before separation}} \times 100
\]

Isolation of spermatozoa with deteriorated membranes by MACS

The sperm suspensions were divided into two sperm fractions by passage through a magnetic field (OctoMACS, Miltenyi Biotec, Bergisch Gladbach, Germany) based on the binding of paramagnetic ANMB to PS present on the surface of spermatozoa (Paasch et al., 2003a). Briefly, the washed spermatozoa were incubated with 100 μl ANMB at room temperature for 15 min, and placed on top of the separation column containing iron balls (Figure 1). The ANMB-labelled apoptotic spermatozoa (ANMB positive) were retained in the separation column, which was placed in a magnet, whereas spermatozoa with intact membranes passed through (ANMB negative). The power of the magnetic field was measured as 0.5 Tesla between the poles of the magnet and up to 1.5 Tesla within the iron globes of the column. After removing the column from the magnetic field, the retained fraction was eluted using an annexin-binding buffer (Margolis et al., 1983).

Statistical analysis

Student’s paired t-test was used to calculate the difference between samples. Hypothesis testing was two-tailed, and P-values <0.05 were considered statistically significant. All values are given as means ± SD. Calculations were performed with Statistica 6.0 software (StatSoft, Tulsa, OK, USA).

Results

Sperm count and motility in samples post-DGC and following the MACS separation are given in Table 1. The percentage of cells collected in the annexin-negative fraction was significantly higher than the annexin-positive fraction (\(P < 0.0001\)). Compared with the sperm count after DGC, the average number of cells decreased by 15.2 ± 19.1% following MACS. The amount of beads was adjusted according to the sperm count as outlined by the manufacturer (100 μl for each 10 × 10^6 cells subjected to separation). The mean volume of beads used was 718.4 ± 321.5 μl. The number of total motile spermatozoa following showed a significantly positive correlation with the number of spermatozoa subjected to separation and volume of microbeads used (\(r = 0.81, P < 0.0001; r = 0.76, P < 0.0001\), respectively). The sperm recovery rates following were comparable to those following only DGC (73.8 ± 12.1% versus 66.7 ± 19.1%).

Figure 1. The principle of the magnetic-activated cell sorting (MACS) method depends on labelling the cell-surface marker with a specific antibody combined with the use of MACS microbeads, which are super-paramagnetic particles that are coupled to highly specific monoclonal antibodies, used to magnetically label the target cell population. By using a MACS column containing iron balls with a coated, cell-friendly matrix placed in a permanent magnet, the target cells labelled with a minimum of microbeads will be retained. As the column is rinsed with buffer, all the unlabelled (annexin-negative) cells will be washed out thoroughly. By removing the column from the magnet, the labelled (annexin-positive) fraction can be obtained.
Discussion

Unorthodox methodologies have recently been accepted as superior techniques for sperm preparation in order to decrease the rate of congenital abnormalities (Schulman and Karabinus, 2005). Despite various advances in sperm preparation methodology, the recovery rate of functional spermatozoa remains unsatisfactory (Henkel and Schill, 2003). In this study, the recovery rate of spermatozoa after MACS separation has been tested. Paramagnetic microbeads coupled with specific antibodies are considered an effective tool for cell separation (McCloskey et al., 2000). Based on the antibody used, leukocytes may be extracted from ejaculates or an immature germ cell population may be separated from testicular tissue (Ochsendorf et al., 1997; van der Wee et al., 2001). The beads may also be used for immunomagnetic separation of membrane-intact and non-apoptotic spermatozoa (Glander et al., 2002; Grunewald et al., 2001; Paasch et al., 2003b, 2005). The paramagnetic ANMB are able to eliminate spermatozoa with externalized PS (apoptotic cells) and disintegrated plasma membranes from cryopreserved semen samples (Glander et al., 2001; Paasch et al., 2005).

In the current study, sperm recovery has been assessed following a preparation protocol that combines annexin V–MACS with DGC. The number of spermatozoa separated as ANMB negative (unlabelled with intact membranes) was higher than the number separated as ANMB positive (labelled apoptotic spermatozoa). This was primarily due to the strict inclusion of semen samples from a donor population. The number of spermatozoa retrieved correlated significantly with the original number of cells subjected to separation as well as the number of beads used. Therefore, we anticipate that sperm retrieval can be maximized by increasing the numbers of separated cells and beads used.

The factors that could alter sperm recovery may be technical, such as the concentration of beads used, or factors that are related to the sample quality. Since the samples will be subjected to DGC prior to MACS, abnormalities such as high semen viscosity or low-motile sperm count may lead to a significant decrease in recovery rates. MACS is based on the separation of apoptotic spermatozoa, therefore samples with a high incidence of deregulated apoptosis will be characterized by an increased pool of ANMB-positive spermatozoa. Such samples are expected in cases with idiopathic infertility, low sperm motility, high incidence of morphological abnormalities and abnormal reactive oxygen species production (Said et al., 2004). These cases would benefit the most from our novel sperm preparation protocol.

DGC is currently established as a sperm preparation technique prior to assisted reproductive techniques (Chen and Bongso, 1999) and has been standardized to complement MACS (Said et al., 2005a). Therefore, the main objective of this study was to evaluate sperm recovery following MACS in order to assess its feasibility as a sperm preparation technique. In the present study, the estimated average number of lost cells (15%) was considerably higher compared with previous work (1%) (Grunewald et al., 2001). The difference between these two estimations could be attributed to the different preparation protocols employed in both studies. In the previous study, cell loss was estimated following glass wool filtration and MACS, while in the present study DGC and MACS were used.

In general, MACS is a feasible and safe method that may be used to provide a high-quality sperm fraction (Giander et al., 2002; Grunewald et al., 2001; Paasch et al., 2003b, 2005). The high sperm recovery rate following advocates the use of this protocol as sperm preparation technique prior to assisted reproduction. Separating a distinctive population of non-apoptotic spermatozoa with intact membranes and subjecting it to IVF or ICSI is a step further in optimizing the outcome of assisted reproduction. Nevertheless, future experiments using animal models that evaluate embryo viability and genetic integrity would still be needed before the technique could be applied to human cases.

Acknowledgements

Research support was provided by the Cleveland Clinic’s Glickman Urological Institute, the Cleveland Clinic’s Research Programs Council (RPC7812), the German Research Council (Deutsche Forschungsgemeinschaft, DFG GL 199/4) and Junior Research Grant from the Faculty of Medicine, University of Leipzig (formel.1–54). The authors would like to thank the following from the Clinical Andrology Laboratory at the Cleveland Clinic Foundation: Karen Seifarth, MT (ASCP), Cheryl Ackerman, MT (ASCP) and Lora Cordek, MT (ASCP) for technical assistance.

Table 1. Sperm concentration and motility in samples following density gradient centrifugation (DGC) only and in samples following DGC and magnetic-activated cell sorting (MACS).

<table>
<thead>
<tr>
<th></th>
<th>DGC only</th>
<th>DGC and MACS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Annexin-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>negative</td>
</tr>
<tr>
<td>Total sperm count (× 10⁶)</td>
<td>74 ± 32</td>
<td>61 ± 32</td>
</tr>
<tr>
<td>Motility (%)</td>
<td>73 ± 10</td>
<td>74 ± 12</td>
</tr>
</tbody>
</table>

Values are expressed as means ± SD.
References

Milenyi S, Muller W, Weichel W et al. 1990 High gradient magnetic cell separation with MACS. *Cytometry* 11, 231–238.

Sugkraoke P, Kate M, Leader A et al. 1991 Levels of cholesterol and phospholipids in freshly ejaculated sperm and Percoll-gradient-

Received 16 January 2006; refereed 9 March 2006; accepted 3 May 2006.